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This is a quick reference for some basic results from real analysis so I don’t
have to keep looking them up.
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1 The implicit function theorem

Let F : Rn+m → Rm be continuously differentiable, i.e., all its first partials ∂i f j
exist and are continuous. Fix a point 〈a,b〉 ∈ Rn+m such that F(a,b) = 0. The
Jacobian of F is:

JF ≡


∂F1
∂x1

· · · ∂F1
∂xn

∣∣∣ ∂F1
∂y1

· · · ∂F1
∂ym

...
. . .

...
∣∣∣ ...

. . .
...

∂Fm
∂x1

· · · ∂Fm
∂xn

∣∣∣ ∂Fm
∂y1

· · · ∂Fm
∂ym

 .

If the m×m right-hand jacobian submatrix [∂Fi/∂yj] is invertible at 〈a,b〉,
then there exists an open set U ∋ a such that there is a unique “implicitly de-
fined” function g : U → Rm such that g(a) = b and F(x, g(x)) = 0 throughout
x ∈U .

Furthermore, g is continuously differentiable, and its derivatives satisfy[
∂g i

∂x j

]
m×n

= −
[
∂Fi

∂yj
(x, g(x))

]−1

m×m
·
[
∂Fi

∂x j
(x, g(x))

]
m×n

.

Corollary: The inverse function theorem

The implicit function theorem establishes the inverse function theorem: if you
have a smooth coordinate transform h : Rm → Rm, define the implicit function
F :Rm ×Rm →Rm by

F(y1, . . . , ym; x1, . . . , xm)= 〈y1 −h1(x), y2 −h2(x), . . . , ym −hm(x)〉.
The implicit function theorem informs us that, at any given point, the func-

tion mapping y1, . . . , ym back to x1, . . . , xm exists just if the Jacobian Jh has
nonzero determinant there. This is the inverse function theorem, with h as
an example.

In particular, the inverse of h is g, and its derivatives are defined by[
∂g i

∂yj

]
m×m

=−
[
∂Fi

∂x j
(y, g(y))

]−1

m×m
·
[
∂Fi

∂yj
(y, g(y))

]
m×m

=+
[
∂hi

∂x j
(y)

]−1

m×m
·Im×m = (Jh)−1(y)

2 The inverse function theorem

Suppose h maps an open subset U ⊂ Rn into Rn, smoothly such that all its first
partials ∂ih j exist and are continuous (i.e., h is continuously differentiable).

If the Jacobian Jh has nonzero determinant at a ∈U , then there exist neigh-
borhoods V ∋ a and W ∋ h(a) such that the restriction ĥ : V → W is bijective; its
unique inverse function g : W → v exists and is continuously differentiable, and
its derivative satisfies the matrix equation

J g = (Jĥ)−1.
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3 The Legendre transform in one dimension

Let f : R→ R be a real-valued function of one variable. If we can find g : R→ R

which obeys the matrix equation D f = (D g)−1, we say that f and g are related
by a Legendre transform1.

The basic idea of a Legendre transform is that if a function’s graph is nicely
curved (specifically, convex), you can uniquely specify any point on it either by
giving the x coordinate (which lets you find the y coordinate), or by giving the
slope of the tangent line through that point (which lets you find its y-intercept,
b). The Legendre transform switches between these two views, and it turns
out that this process is an involution — applying it twice returns the original
function.

We can use the inverse function theorem to find a formula for computing a
Legendre transform of a given function.

Suppose the derivative of D f is invertible at a point a. That is, that D2 f ̸= 0.
Then by the inverse function theorem, there exists a neighborhood of a where
the inverse of D f is locally defined. Call it V (ρ). We will prove that a Legendre
transform g of f exists, and can be defined by:

g(ρ)≡ ρ ·V (ρ)− f ◦V (ρ)

Proof. Throughout this neighborhood, D f ◦V = id. That is, they are functional
inverses of each other. (The function id(x)= x is the identity map, sending every
number to itself.)

Instead of D f , we can compose f with V instead. By the chain rule, we find:

D( f ◦V )= (D f ◦V ) ·DV = id ·DV

The product rule gets us another way to write the right-hand side id ·DV ,
since

D(id ·V )= V + id ·DV ,

or, by rearranging, id ·DV = D(id ·V )−V .
Making that substitution, we find that

D( f ◦V )= id ·DV = D(id ·V )−V

which is another way of saying that V satisfies the differential equation

V (ρ)= D(id ·V − f ◦V )

and that if there is a Legendre transform g of f such that D g = (D f )−1, it
must satisfy the differential equation

D g(ρ)= D(id ·V − f ◦V ).

1There’s a family of such g, since adding a constant to g doesn’t change the matrix equation.
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In particular, by integrating both sides, we find that

g ≡ id ·V − f ◦V

is one such Legendre transform whenever the local inverse V of D f can be de-
fined.

Computing the Legendre transform To compute the Legendre transform
of f (x),

1. Compute D f (x), and solve the equation ρ = D f (x) for x = V (ρ).

2. Substitute x = V (ρ) into the formula for f , obtaining f ◦V (ρ).

3. Compute a Legendre transform g(ρ)≡ ρ ·V (ρ)− ( f ◦V )(ρ)

4 Applications to nomography

Implicit function theorem for ŵ(u,v). If you are making a nomogram for
a relation F(u,v,w) = 0, and at some solution point the partial ∂3F is nonzero,
then in a neighborhood of that point, you can implicitly define ŵ(u,v), the ‘unique
value of w that solves the equation given u and v’. It has two derivatives, given
by

∂iŵ(u,v)= − ∂iF(u,v, ŵ(u,v))
∂3F(u,v, ŵ(u,v))

(i = 1,2)

The slope-intercept fields represent a smooth change of variables. If
you are making a nomogram for a relation F(u,v,w) = 0, and you have nomo-
graphic curves γ1(u), γ2(v), γ3(w) which embody that relation (i.e., for each
〈u,v,w〉, we have F(u,v,w) = 0 if and only if the three points γ1(u), γ2(v), γ3(w)
are collinear), you can define the slope field A(u,v) and intercept field B(u,v) as
the slope and intercept of the isopleth line passing through γ1(u) and γ2(v).

This amounts to a map h :R2 →R2, 〈u,v〉 7→ 〈A(u,v),B(u,v)〉. If the Jacobian
J(A,B) is invertible at a point 〈u0,v0〉, this implies that the values of the pa-
rameters 〈u,v〉 can be uniquely recovered from the slope-intercept data 〈A,B〉 in
the neighborhood of that point — that is, that h is locally invertible there.

This is a big idea because it means that either pair of numbers 〈u,v〉 or 〈A,B〉
suffices to uniquely determine the isopleth line and the (locally) unique solution
defined by that line.

4



Miscellaneous scratchwork

Any two of the four quantities 〈u,v, A,B〉 suffices to uniquely determine
the isopleth, and locally uniquely determine a solution ŵ. An isopleth
is a line drawn through the three curves γ1(u), γ2(v), γ3(w). (Note: although
these curves may bend so that a single isopleth crosses them twice, based on the
implicit function theorem we can always find a narrow enough neighborhood
around a given solution to make the choice of intersection point unique.)

The two points γ1(u) and γ2(v) completely determine the isopleth line, as do
its slope A(u,v) and intercept B(u,v). Either pair of parameters will do. And
just based on the geometry of the situation, it seems clear to me that any two
of the four parameters should in fact suffice to define the isopleth and therefore
a local solution. (For example, fixing u defines a point in the plane, and fixing
the slope A of the isopleth, now completely determines the isopleth line and the
local solution.)

And indeed, suppose we are in a neighborhood of a particular solution F(u,v,w)=
0 where ∂3F ̸= 0, so we can locally solve uniquely for ŵ(u,v). The two values
〈u,v〉 suffice to uniquely determine ŵ, and also — because of the nomographic
curves — define A(u,v) and B(u,v).

Certainly we can define a map h(u,v,a,b) = 〈A(u,v)− a,B(u,v)− b〉. The
implicit function theorem says that we can solve for any two of the variables
y1, y2 as a function of the others x1, x2 wherever the Jacobian submatrix of the
variables we’re trying to solve for is invertible.

Here’s the entire Jacobian:

Jh ≡
[
∂u A(u,v) ∂v A(u,v) −1 0
∂uB(u,v) ∂vB(u,v) 0 −1

]
There are six pairs of variables we might consider, leading to six possible

Jacobians.
For 〈u,v〉, the Jacobian is J(A,B). For 〈a,b〉, the Jacobian is −I. For 〈u,a〉,

it’s +∂uB(u,v). For 〈u,b〉, it’s −∂u A(u,v). For 〈v,a〉, it’s +∂vB(u,v). For 〈v,b〉, it’s
−∂v A(u,v).

I believe that if any of these Jacobians vanishes, there is some degenerate
nomographic funny business. This would imply that on well-behaved nomo-
grams, these Jacobians are all always invertible and hence any two parameters
out of 〈u,v, A,B〉 suffice to determine the other two.

If ∂u A(u,v) vanishes at some point, this means that ∂u
g1−g2
f1− f2

vanishes there,
which means that g′

1( f1 − f2)− (g1 − g2) f ′1 = 0 vanishes. Which means that the

determinant
[
( f1 − f2) (g1 − g2)

f ′1 g′
1

]
vanishes. This is a kind of Wrońskian deter-

minant of f1 − f2 and g1 − g2, suggesting that they are linearly dependent (at
that single point?).

It is also the following determinant

∂u A ∝ det

 f1 g1 1
f2 g2 1
f ′1 g′

1 1

 ,
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which is the Massau-determinant nomographic form of F(u,v,w) with the
final row 〈 f3, g3,1〉 replaced with 〈 f ′1, g′

1,1〉, for whatever that’s worth.

What does the complete legendre transform of the slope-intercept fields
look like? Notably, f1(u) = −∂vB/∂v A and g1(u) = B(u,v)− A(u,v) · ∂vB/∂v A,
and similarly with the roles of 1 and 2, u and v, exchanged.

So if we wanted to write ρ = ∂u A and σ= ∂v A
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